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ABSTRACT
A detailed global and local analysis of smooth solutions of the variational
problem

s 2
(1i) § [ x°(s)as =0 ,
0

subject to position function constraints

(1ii) x(si) =Py 0 <8y <5 <oeee<s < s ,

is carried out. Here {pi}g CIR2 is prescribed, x is a vector-valued func-

tion with curvature «(s) at arc length s and the interpolation nodes s
are free. Problem (1) may be viewed as the mathematical formulation of the
draftsman's technique of curve fitting by mechanical splines.

Although most of the basic equations satisfied by these nonlinear spline
curves have been known for a very long time, calculation via elliptic integral
functions has been hampered by a lack of understanding concerning what precise
information must be specified for the stable determination of a smooth, unique
interpolant modelling the thin elastic beam. In this report, sharp character=-
izations are derived for the extremal interpolants as well as structure theorems
in terms of inflection point modes which guaranteé uniqueness and well-posedness.

A certain type of stability is introduced and studied and shown to be

related to (linearization) concepts associated with piecewise cubic spline
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ABSTRACT (continued) i

functions, which have been studied for decades as a simplification of the
nonlinear spline curves. Many examples are introduced and studied. .

fopiticey o s
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SIGNIFICANCE AND EXPLANATION

. The mathematical formulation of curve fitting by mechanical splines,
i.e. thin, flexible, elastic beams passing through freely rotating sleeves
anchored at fixed locations, is studied in this report. These are called

elastica or nonlinear spline curves.

As contrasted with the mathematically idealized splines, which have
proven to be of considerable utility and concerning which much information

is available, the nonlinear splines are relatively poorly understood. The

writers are attempting to understand and systematically construct these
curves. Computer graphics obtained by other workers suggest remarkable
efficiency of the elastica for curve fitting. This is perhaps not too

. surprising since the nonlinear spline represents an equilibrium position

of a thin beam.
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The responsibility for the wording and views expressed in this descriptive sumssary
lies with MRC, and not with the authors of this report.

il
PRl




RS CREP IV

EQUILIBRIA OF THE CURVATURE PUNCTIONAL AND MANIFOLDS
OF NONLINEAR INTERPOLATING SPLINE CURVES

Michael Golonbl and Joseph Jetouez

§1. Introduction

let P = (poopl,...,p-] be an ordered set of points in the Euclidean plane (the p,
need not be distinct) and let it be required to pass a smooth curve through these points in
the prescribed order. It is an old technique of draftsmen to use a mechanical spline to
accomplish this. 1f the spline is considered as a thin elastic beam of uniform cross section
with a central fiber that is inextensible, then the strain energy of the bent spline of length
s is given by

s
A {’ Kz(l)dl +8B

where «x(s) is the curvature of the fiber at arc length 8 and A, B are constants. Aan

equilibrium position of the spline makes the energy functional stationary, hence satisfies

$ 2
(1.14) 8§ x“(m)as =0 .
o

This equation together with the interpolation conditions

(1.1ii) x(si) =p, 05 8, <8 < e <8 <8

for the position function x, constitute the mathematical formulation of the draftsman’s
technique. The present article deals with analytical (not graphical nor computational) prob-
lems arising from system (1.1). In elasticity theory the solutions of (1.1i) or of the more

general equation

1l>:lv:ll£on of Mathematical Sciences, Purdue University, W. Lafayette, Indiana 47907.
2D.pannnt of Mathematics, Northwestern University, Evanston, Illinois 60201.

Sponsored by the United States Army under Contract N6. DAAG29-75-C-0024. This material is
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8
(1.2) §¢(f s+ Pimlde =0 ,
0

where ) is a constant, are known as elastica. Their study dates back to the Bernoulli
brothers, Euler and others (see Love {8, Ch. XIX] for classical results). The boundary con-
ditions in traditional elasticity theory have little in common with the interpolation condi-
tions (1.1ii). To materialize the latter ones in the beam model one may think of freely
rotating small sleeves, anchored at the points | YRR through which the spline can slide
without friction. We refer to the solutions x = X of the variational problem (1.1i, ii) as
extremal P-interpolants. In some parts of the present paper we deal with extremal length-

~prescribed P-interpolants, in which = s, -8 is given in addition to P. To materialize

0
this condition one replaces the sleeves at Pg Py by pins which allow no sliding. In other
parts we consider extremal angle-prescribed P-interpolants, in which the angles that the spline
makes at po and Py with a reference line are given. This situation prevails if the

sleeves at Py and Py are not allowed to rotate.

Stable equilibrium positions in mechanics are sought as positions that minimize the

»
potential energy functional. In one of the earliest papers discussing nonlinear interpolating

splines [2] it was pointed out that the infimum of [ * xz(s)ds is 0 for any _configuzation
P, hence can be attained only in the trivial case vn?ere P is interpolated by a straight
segment. Lee and Forsythe [7], who make a substantial study of the variational problem
(1.1i, ii), call the solutions (when existence is hypothesized) local minima. However, it will
be proved in $6 below that, in the simple case where P consists of 2 points, there are
countably many nontrivial extremal P-interpolants; none of them constitutes a local minimum of
the energy. This makes it evident that an extremal P-interpolant is, in general, not a local
minimum (for a detailed discussion of the stability problem see [5]).

The existence questions for interpolating elastica are much more subtle. For length-
constrained or length-prescribed interpolants one can prove existence of extremals (actually
global minima) by the direct methods of the calculus of variations, becauss one has compact-

ness in a suitsbly chosen function space (this was done in [3] and {6); sea also the
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Appendix of this paper). This is not the case for interpolants with no length restriction,
and the existence of such extremals interpolating n points in general position, and whether
they are local minima or not remains an open question (some progress along these lines has
been achieved by M. Golomb (4], [5]). Computational work on extremal interpolants is more
advanced (cf. M. Malcolm [10]), although decisive progress in this area is aluo hampered by
the lack of general existence and uniqueness theorems.

We now give a brief account of the content of this paper. In §2 we define the function
classes in which the extremal interpolants are sought. We also characterize them by Euler
equations (for the Cartesian coordinates), boundary and regularity conditions. In §3 we do
the same for the "normal representation” of the extremals, by which we mean the function
s+ 6(s), which is the angle that the extremal makes at arc length s' with a reference line.

The normal representation 6 of a length-prescribed extremal P-interpolant appears as the
solution of a free multi-point boundary value problem for SyrecesSy g 0 with s - s, pre-

m
scribed:

(1) 8(s) - u] sin 0(s) + u} cos O(s) =0, 8, <8 <5 .

(1.3) (1) B(s) = d(sy) =0 ,
119wl - uhcos 8ts) + i, - vistn6(s,) =0, i =1,000,m-1
141 " V1 i i1 " ¥ g =0 pootomel .

For the general extremal P-interpolant, (1.3iii) holds also for i = m ard Sy and s, are
free as well with u:ﬂ = u:ﬂ = 0. The function 6 and the knot abscissas s i are the

unknowns; the multipliers u:'.. ui are determined from the interpolation conditions. In §4 it

is shown how certain families E (x., k) of extremal interpolants with prescribed numbers
1°°°""

(kl""'km) of inflection points between knots ("mode"), can be reaiized as smooth 2m-~dimen-

sional manifolds M The inverse mapping from M into the position

(kl....k.)’ (kl....k.)
function space of the extremals is continuous when the latter is topologized by a suitable
metric. Thus, the mode (kl.....km) of an extremal suitably delineatas uniqueness and well-

posedness. The union of the E (x., k) consists of only those extremals which have a
17000k
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genuine knot and no inflection point at each interior interpolation node. Points in the
intersection of the boundaries of the manifolds M (kl""'kn) correspond to singular points
in position function space. For these boundary elements some interior knot is spurious (r is
not discontinuous) or is an inflection point. We give two examples to demonstrate this.

In §5 we study the existence of elastica spline interpolation in the small. Does the
set of configurations P for which extremal interpolants exist have nonempty interior in
112‘? More specifically, which P in Rzn are interior points of this set? We show, by
use of the implicit function t:heor that near a given configuration P with extremal inter-
polant E there is a local diffeomorphism between configurations and extremal interpolants
if (E,P) satisfies a certain hypothesis (A). It requires that a homogeneous linear differ-
ential equation with variable coefficients depending on E and with homogeneous linear side 1
conditions has no nontrivial solution. Another formulation of this condition is that a com-

putable function (involving many quadratures) be ¥ 0 at the end point of E. It is easily

verified that the ray configuration PO' with the trivial extremal interpolant EO' satis- . ;
3 fies (A), so that the existence of extremal P-interpolants for all configurations P in 1
3 some Buclidean neighborhood of any ray configuration is thereby demonstrated. The differential '

equation problem of hypothesis (A) reduces to the natural cubic spline interpolation problem
in the case (PO,EO) . This demonstrates that cubic spline interpolation can be interpreted
as the result of linearization of extremal interpolation (in the sense of making j' «2as
stationary) near the trivial interpolant for the ray configuratio;; This proof makes precise
the old idea that cubic splines are in some sense the “smoothest" interpolants. Of course,
it has long been known that cubic spline functions arise from minimizing the quadratic func~
tional [ (sz.)2 among the interpolating functions £. Since the linear operator 02

_' supposedly approximates the nonlinear curvature operator, the cubic splines recommend them-
selves as near optimally smooth interpolants. The "‘hairpin" confirguration P with a loop
interpolant E is given as an example where hypothesis (A) is not satisfied. There are con-

figurations close to P for which there exists no extremal interpolant near E and there

are other configurations close to P for which there do exist extremal interpolants

-4
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near E. This seems to be the first known example demonstrating singular behavior in non-
linear spline interpolation.

§6 contains an exhaustive study of extremal P-interpolants for the case where P consists
of two points. It is shown that there exist, besides the trivial extremal, countably many non-
trivial ones of distinct integral mode, that all of them are obtained by simple transformations
from a basic one, all have the same length and (cf. [5]) none makes the potential energy a
local minimum. Composition of these 2-point extremals yields countably many extremal P-inter-
polants for various special configﬁrations P. §6 also exhibits countably many angle-
prescribed and countably many length-prescribed 2-point extremals.

In §7 some special cases of closed extremal P-interpolants are considered. It is shown
that the only closed length-prescribed extremal without knots are the répeatedly traversed
circle and figure eight configurations. Formally, the Euler equation is the limiting case cf
the Euler equation for an elastic circular ring under hydrostatic pressure p as p > 0
(cf. (1] and {12]). The ring, however, is not an elastica since its deformations satisfy
stress~strain relationships. We also consider closed extremals which are not length-pre-
scribed. Here the extremals in §6 are used to construct infinitely many closed extremals
for several special P-configurations, for example where P is the set of vertices of a
regular polygon. In particular, if a regular m-gon, m > 2, is inscribed in the unit circle,

then a circumscribed extremal exists with length

in X pk /3,
m sin o PG v2; 8,)

' = ’

" ZEG V3 e - PG /T )

where cos Bn - Jcos n/m. There are similar formulas for the energy Um and the arc length
s.(O); of interest is the result that sm(ﬂ)/e + )} as m+ =, so that the circumscribed
extremals have the unit circle as a limiting configuration. These extremals are stable,

i.e. they make the potential energy a local minimum, as proved in (S].




§2. Reqularity and Characterizations of Open Extremals

For two points p = (pl,pz) and q = (ql.qz) in real Euclidean space nz we employ
the inner product pgq = plq + p?q?, the distance [p-q| = [(p-@) (p-01Y2, and the exterior
product (p.ql = plqz - pzq]' of such points. We consider mappings x = (xl,xz) of the unit
interval I = [0,1] ¢to ®. We denote by 82(1) the real Hilbert space of those mappings
x such that the derivative x is absolutely continuous and x € Lz(I). equipped with the

inner product

(2.1) oy), = [ (xy + xy + XY) .
2 1

We say x is a regular element of Hz if l;:(t)l >0 for all t € I. We cbserve that the

regular elements of Hz form an open subset 8;.9 of Hz.

For x¢H2 we define the arc length map -le-oli by

t
s, (t) -folil, teI .

If x ¢ ll?g then s  has an inverse 3;1 : {0,8] + [0,1), where s = 5,(1), and in this

case the function x e s;l : [0,8] + Rz has an absolutely continuous derivative, and square-
integrable second derivative. We identify x with the oriented curve C in the xlxz—plane
which has parametric representation x = x(t). Writing X = x o s;l, we say that x is

the arc length parametrization of the curve C. Clearly x € “2(0';) and we have:

Ko -;ll;: ° s;ll -xe lx"(;lﬁo a;l)

.
s X = — — ——

1|‘

-llz
x

-;( o S;lllio'

l;ol-
x
reg
1f£ x¢1-12 + then its curvature xsz+!t is defined by

(2.3) () = X es (t) = kAP0, tex .




Suppose x ¢ l-l;‘mJ and sx(l) = 5. Then we define the curvature functional,

: B. . 5.
(2.4) v = [ G fxxi=f x2 .
o * o 0

P P

Note that (2.4) defines U as a mapping of H;eg into R+ . The equivalent expression, i

1= .

(2.5) v = [ (x%%x
I

is independent of the parametrization of x in the following sense. If u is a Cm-map }

of I onto itself with u> 0 and x = y eu then :
v = J 1553970 = uy .
I

If x ¢ ngg then U is Frechet-differentiable at x and, for any increment vy € Hz.

(2.6) U0 Iyl = [ (200,E1 (0E + [y, %] 70 - siaa Zxylx]TTY .
I

If the variable of integration is chosen to be Syr (2.6) simplifies to

L J e
¢ = Xy - 205 s X = ° v = °
(2.7) u' (x) [y] Io (2xy 3Kxx y)dsx, X=Xes ,y=y°s,

Let O = PogePyreeiPy be fixed points in R2 » not necessarily distinct, but

Pi1 # Py i=1,...,m, and let P denote the ordered set {po.pl....,pm}. We refer to

P as a configuration in Rz . If x¢ H;‘g is such that x(ti) =p; {i = 0,1,...,m) for

some 0 < ty < LSRR A . 3 1 we say the curve x is an admissible P-interpolant, with

knots (i = 0,...,m). The terminals x(0), x(1l) may or may not be coincident with the

terminal knots Py P, " The P-interpolants defined here are to be considered as open even if
x(0) = x(1). In the physical interpretation p 4P 3 for some i ¥ j means that the beam is
constrained to pass through two sleeves which are fixed at the same point Py but can rotate

independently of each other.

-7-




Suppose x is a fixed admissible P-interpolant and X =3x0 s;l is its arc length para-
metrization, s (1) = 8 its length, 2(21) =p, (1 =0,1,...,m its knots. Given any
2z € Hz let z =2zo s;l, be the parametrization of z which uses the arc length of x as

the parameter, and assume E(Ei) =0 (i =0,1,...,m). For |e| sufficiently small, x + :z

is an admissible P-interpolant and
(2.8) U(x+e2z) - U(x) = € U'(x)[z) + o(e) as €+ 0 .
This justifies the following

Definition 2.1. The admissible P-interpolant x, with arc length parametrization

X =x .s;l' knots pi - §(§i) (i =0,1,...,m), length s = sx(l). is an extremal P-inter-

polant if

(2.9) U'(x)(z] =0 ,

i.e.,
g ua 22 - -
J (2xz - 3¢ixz) =0, z=1zo0s '
0 x

for every 2z ¢ H, satisfying ;(;i) =0 (i=0,1,...,m.

2

The following proposition follows from (2.8) by the usual arguments of the calculus of

variations. It helps to explain the interest in extremal P-interpolants.

Proposition 2.1. Suppose the admissible P-interpolant x minimizes the curvature functional

U locally, i.e.
U(x) < uly}

for every admissible P-interpolant y in a neighborhood of x in Hz. Then x 1is an

extremal P-interpolant. .

The three major propositions of this section follow. We use the notation Yy for the

restriction of a map y to the interval J.

- iRl e et i e
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Proposition 2.2. The admissible P-interpolant x with arc length parametrization X, knots

p; = ;(;i) (i =0,...,m), and length s, is extremal if and only if the conditions

(1) x e c?[0,5], x(s) =0 for 0<s < Eo and ;m <s<s

(2.10)

(i) (2% + xZ0(8) =c e B for se (5, 1,50, i=1,...m

i 1

- © = -
hold with x(si-l';i) e C (si-l'si) (i=1,...,m).

Remark 2.1. Throughout the paper we use the same symbol to denote reguiarity classes for

both scalar and vector functions.

Proof: The implication (2.10) ==)» (2.9) is routine and follows upon decomposing {0,8] into

subintervals determined by the s dot-multiplying (2.10ii) by é, integrating by parts

i'
and summing; the continuity of Xz, the equations ;(Ei) =0 (f =0,...,m) and the eguations

of (2.10) easily yield U'(x)[z] = 0.

Conversely, if (2.9) holds then, selecting z e c”(o,sl with support in (Ei.E i,

i+l
i fixed, we have

S141 . .
[ xe+mz=0 ,
84
where F = 3K2§. By elementary distribution theory, (2x + F) - = is in
X (si'si*l)
*(3,,8 a
Cc (si,si+1) an
D2(2§ + P)(- s ) =0 .
81'%141

It follows that

o 22
(2x + 3&xx)(' - ) = c

1'%441 i

and, recursively, x,- = € c’(; 8,..). To prove the continuity of x at an interior
(l1'l1+1) 1’71+l

knot ;1. select u in C [0,8) with support in [;1-1';1+1] satisfying “(;1) = 0,

<
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u'(§i) =1 and put z = (u,0). Then, from (2.9) and integration by parts,

L ]
il e 22 . = .
0= L {(2x + 3xxx)z) + 2(1,0) (x(s; + 0) - x(s, = 0)) .

8i-1
Since the first term equals

c,(2(s,) - z(s,_)) +c,  (z(5,,)) - 2(s)) ,

i+l i+l

which is clearly zero, we conclude that (il) - is in cz(;o';m)' A simjilar argument

- (Solsm)
works for x°.

if ;i is either 30 =0 or ;m = s, jumps are replaced by one-sided limits and one

concludes §(§0 +0) = ;(;m - 0) = 0. Assume now ;m < 8. One argues as above that

x + 3 28
(2x Kxx)(;m';) =cy v

and that x is continuous at ;m' We show that Cp = 0. 1Indeed, select u € C’[O,E], with
uzo for 0<s < s, satisfying u(s) = 1, u(s) = 0, and put z = (u,0). Then, from

(2.9) and integration by parts over [Em,gl,

- - 1
0= cm(z(s) - z(sm)) =cp

and a similar result holds for c:. Thus Sy = 0. By (2.15i) of Proposition 2.4 to follow,
we conclude that K:(s) =0 for ;m <s<s. In particular, .X(8) = 0 for ;m <s <8,

and, by continuity, for ;m <8< s. A similar proof holds if 0 < 8 This completes the

0°
proof of the proposition.

We introduce the following notation for the jump of the third derivative of the extremal

X at the knot ;i

(2.11) Aii - x ‘;1 +0) - x ‘;1 ~0), 41=0,1,....,m .

If x (;0 - 0) andfor x (;ln + 0) are not defined, they are to be replaced by 0.

«10=




The following proposition gives expressions for the extrematl vatue U(x)  which do not

involve quadratures.

-

Corollary 2.1. 1If X is the extremal F-interpolant of Proposition 2.2, then

- m=1
(2.124) Ukl = Yeteyy - Ry
i=0
and
- n s
(2.1241) ux) = -2 } ;b x

i=0

Proof. 1f we dot-multiply (2.10ii) by X and integrate over [0,s], using integration by

parts, we obtain

m-1
~20(x) + 3ux) = Joelpy, - B .
1=0

which is (2.12i). Now use (2.10ii) at ;i + 0 and ;i - 0 and subtract to obtain

which holds for i = 0,1,...,m if we define €, =Cc™ 0. By (2.121)

20, % = ¢, - C,

i i i-1’
we have
» -} } ! ot %
U(x) = c. {p ~-p)=~-)plc ~c ,)=-2)pAx ,
LAt e Pt S SRR 00 (oo b1

so (2.12ii) is also proved.

Remark 2.2. Since U(x) = 0 only if x is linear, it follows from (2.12ii) that an extremal
-we

P-interplant x that is not linear must have a discontinuity of x at some of the knots

(or else, X (p, +0) # 0 or X (py = 0) #0).

From an extremal x, as characterized in Proposition 2.2, one can obtain infinitely
many othexr extremals by shifting the terminals x(0) and x(1) along the rays that are tan-
gent to x at Py and Ppe The value of U(x) is not changed by these variations. We

wish to ignore these trivial portions of an extremal and will for this reason adopt the

-11=
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following convention. If we speak of an extremal P-interpolant x with arc parametrizaticr
x, knots p; = §(;1) (1 =0,...,m) and length s then, unless stated otherwise,

8, =0, 8, = 8, and the terminals are P, = x(0) = 0, P, = §(§m) = x(s).

For some applications one wishes to constrain the p-interpolants further by prescribin:
the length 8 of the arc between the terminals. Let the class of these P-interpolants be
called length-prescribed (they differ from the "length-constrained" interpolants of [3]).

The next definition deals with the extremals for U in this class.

Definition 2.2. The admissible P-interpolant x, with arc length parametrization X =x us;l.

knots - ;(;1) (1 =0,...,m, length 5 = 'x(l)' is a length-prescribed extremal P-

interpolant if

(2.131) U'(x) [z] + AS'(x)([2] = O
for any 2 ¢ H2(I) for which zoe s;l(Ei) =0 (i=0,....m) and X ¢ R determined so that

(2.1344) Sx) : = [ |x] =3
I
For these extremals we have a characterization similar to that of Proposition 2.2; note that

S'(x) is given by

faz - -1 - -1
S'(x)[y] = [ xy, for all y e Hy(I); x = x°8 ", y=yes,

0

Proposition 2.3. The admissible P-interpolant x with arc length parametrization X, knots

Py - ;(;1) (1=0,1,...,m) and length s = ;m is a length-prescribed extremal if and only

if
(1) % e c*0,3], X(0) = 0, X(&) =0 ,
- 28 2
(2.14) (11) (2x +3xxx-)\x)(; ) "Si € R, i=1,...,m ,
1-1'%4
- - ? - ? -
(1i1) As = U(x) = c.(p, ~p,_,) =Ux) +2 ) pA.x ,
qop 104 i=1 LA

-12-

4.._.__..,_ ..___.A,_

i
!
¢
!
X
|
i

i




hold with x, =

(s € C‘(; l; ) i =1,....m

i_lcsi) i-1"71

Proof. To prove the implication (2.14i,ii) ==» (2.13i) one proceeds as in the first part of
the proof of Proposition 2.2. If, next, (2.14ii) is dot-multiplied by x and integrated
over [0,8) one obtains, using integration by parts,

m
-2U(X) + 3U(x) - As = ) c (p, -
=1 13

which give (2.141iii), which is seen to be equivalent to (2.13ii).

Conversely, if (2.13i) holds then selecting 2z € C'[O,El with support in

i fixed, we have

’1+1

[ xe+r-ax1z=o0
53

where F is as in the proof of Proposition 2.2, It follows that

L 2: L
(2x + 3k'x = AX) - =~ = C .
x (’i'si+1) i
The regularity properties of x are proved as before. The arqument in the first part of the

proof shows, that given (2.14i,ii), then (2.14iii) and (2.13ii) are equivalent.

Remark 2.3. For any configuration P = (po.pl,...,ph}. there exists an extremal P-inter-
polant satisfying (2.14) with A € R. 1Indeed, if

n-1

L, = I lp,, -pl
0 i=0 i+l i ’

then the length-prescribed extremal x, which minimizes fLK: among all admissible P-inter-
o
polants with length equal to L > L, is guaranteed to exist [6) and satisfies (2.13i) (cf.

Appendix] .




Remark 2.4. Curves x : R + Rz, satisfying the equation

2% + 3% - Ax = ¢
X

are called elastica (cf. ([8]), more specifically inflexional elastica if the curve has inflec-

2 < cz). Curves for which ) = 0, the case

tion points (which is the case if and only if A
of primary interest in this paper, will be referred to as gimple elastica. Geometrically, sim-
ple elastica are characterized by the property that the angular variation between consecutive
inflection points is exactly r (for all inflexional elastica the angular variation is > 7).
A smooth oriented curve in Rz with continuous curvature which consists of finitely many

subarcs of the simple elastica and has (possibly) discontinuities of the curvature derivative
at the interpolation points PpreceiPy g only is called an interpolating elastica (cf. [B]).
The next proposition deals with implications and equivalences of (2.14ii). It should

be observed that these results apply to Equation (2.10ii) as well, since the latter is the

special case of (2.14ii) with A = 0,

Proposition 2.4. Condition (2.14ii) implies each of the following four conditions on
(5,_1+8) U =1,...m:
(1) x“=egx+2 ,
(1) & =i, o
27 Tty '
(2.15)

(144) « -%{i, e +Y. Y € R

(iv) iEx +

N

3
Ke = (A/2)Kx =0 .

Moreover, (2.15i) also implies (2.14ii).

. . .
Proof: 1If (2.14ii) is dot-multiplied by X, one obtains, since |x| = 1, [x|? = x:,

xx =0, xx + |x| 2 = o0

[ * me

2 axx =l e2x|? e mx e decxmer

14~
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hence (2.15i). Differentiating (2.15i) we obtain

. -
KK =>C,X .
x X i

0=

If x (s) # O for some s, then Ixx(s)l = |x(s)| >0 ana §(s)/xx(s) is the unit vector

(-x%(s), x'(s)). Therefore, « (s) = %I;(s), c,] and (2.15ii) holds in this case. If

xx(s) = 0T and s is a limit of s, such that xx(sn) # 0, then continuity of x and «

x

together with the previous argument give the same equation. On a fixed interval (gi-l';i)'

let ri = {8 : Kx(s) # 0} and let (a,8) be any subinterval in the decomposition of

(80178

3 - - . [
By the continuity of x, on (si-l'si) it follows that Kx(ﬁ) =0 = [x(B), ci]. Moreover,

)\fi. We must show that (2.15ii) holds on (a,8). Now L and éx are zero on (a,B).

since ‘x =0 on (a,B),

(2.16) %(s) =as + b, se (a,8], a,b e R .

Thus, from (2.16),
ix(s), c,l = ta,c;l, s € [0,8] .

In particular, (a,ci] = 0 and thus (2.15ii) holds on (a,B). Next, (2.15iii) follows from
(2.15ii) by integration. To show that (2.15iv) holds, let Kx(s) # 0; then

x(s) = Kx(s)(-iz(s). il(s)) and one obtains upon differentiating (2.15ii),

% () = 2x(s).e,) = =2k (s)c x(8) = FUAc (8) - .

Thus, (2.15iv) holds at every point s for which &x(s) # 0. The case when s is a limit
point of s, for which Kx(ln) ¥ 0 then follows immediately. The case when s is not such
a limit point is of course trivial.

To show that (2.15i) implies (2.14ii), assume i(s) ¥ 0 for some 8 ¢ (;1.;1*1). Since
:(s) and i(:)/li(a)l are orthogonal unit vectors in R?, we have, using (2.15i) and the

2 = = 2
fact that x(s)x(s) + |x(s)]| = o,

'The authors thank S. D. Fisher for a helpful suggestion here.
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a A = = = 2
(c,x(8))x(s) + (cix(S))x(a)/Ix(l)l

2

d(x’ (s)) o
x = = 2
rr x(s)/|x(s) |

(2(8) - Nx(s) +

(3x:(s) - NX(s) + (2x(8)X(s))x(8) + (2x(s)x(8))X(8)/|x(s)|?

(3::(3) - Mx(s) + 2x(8)

which is just (2.14ii). If s is a limit point of s, for which i(sn) ¥ 0, then the same
equation holds by continuity. If s is not such a limit point, then (2.14ii) reduces to
Sy = -Ai(s). which is clearly obtained by dot-multiplication of (2.15i) by i(s). This con-
cludes the proof of Proposition 2.4.

At the end of this section we mention still another constraining condition for extremal
interpolants. It consists in fixing the angle that the interpolant x makes with a fixed

line at the terminal knot Py ™ ;(30) and/or P, = ;(;m)' Thus, the condition is

(2.17) x(so) = @ and/or x(sm) =e

0

where e, e are unit vectors in 13. We refer to these extremals as angle-constrained.

If x is an admissible P-interpolant with knots Py - ;(;1) which satisfies the con-
straint (2.17) then any other P-interpolant in a sufficiently small Hz-neighborhood of x,
satisfying the same condition, is of the form x + ez where 2z ¢ Hz,
ze s }(3,) =0 (1=0,1,...,m), 2o (3;) = 0 and/for e s}3,) = 0. It is easily seen
that if x s an extremal P-interpolant with the added constraint i(;o) =e, then the “free
boundary" condition i(;o) =0 of (2.10i) is replaced by i(;o) -e,. Similarly if
i(;.) =, is a constraint then this condition replaces 3(;-) = 0, There is no other change

in the conditions of Proposition 2.2.

16~




§3. Normal Representation of Extremals

. In this section the dependent variable is an angle. Let T(= Tl) denote the 1l-dimcr.-
sional torus. ¢ ¢ T is represented by a real number (also denoted as) ¢, one of the set

° ¢ + 2kn(k = 0, £1, +2,...). A continuous function 8 : (0,8) ~ T is represented by a cor.-
tinuous function (also denoted as) 0 : (0,8) » R, one of the set 6 + 2kn. The derivative
8 is always a unique function (0,8) + R. Let ﬁl(o,E) denote the class of absolutely con-
tinuous functions 8 : (0,8) » R for which § € L,(0,3). Then the function x = x. :

(0.3) > R?, defined by

1 s 2 s
(3.1) xgts) = [ cos 8, xgs) = [ sin @
[+} 0

1xz—plane. parametrized with

is in H2(0,§) and represents an oriented curve C in the =x
respect to arc length, x(0) =0, izlii = tan 8, 6(s) is the angle which the curve C makes
with the xl-axis at arc length s, and 63 is the curvature of C at s. Conversely,

given an oriented curve C with cartesian representation x ¢ Hzlo,E). parametrized with

respect to arc length, there is a unique function Ox € ﬁl(o,i) such that

s s
s = xl(0) + [ cos o_, x2(8) = x2(0) + [ sine_ .
0 x () x

We say that Ox is the normal representation (n.r.) of C.

curves C that differ by a translation have the same normal representation. If ex is
the n.r. of C then ex + const. is the n.r. of a curve obtained from C by a rotation,
and —Ox is the n.r. of a curve obtained from C by a reflection at the xl-axis. In a
geometric setting we may identify curves C which differ only by a congruence, and each con-
gruence class is represented by a single function 6 with the specification 6(0) = O,
8(0) >0 (or 8(0) >0 if 6(0) = 0).

In many cases it will be convenient to characterize extremal P-interpolants by their
normal representation. For this purpose we replace Propositions 2.2 and 2.3 by the following

propositions whose proofs we omit.

=17=




Proposition 3.1. The function 6 ¢ fil(o,;) is the normal representation of an extremal P-

interpolant with knots Py (i=0,1,...,m) at O = ;0 < ;1 < see < ;n and length g = ;m'

if and only if the conditions

(1) 8¢ ctro,s1, 6(0), 6(3) =0 ,

(i) 8(s) = cicos 8(s) + cisin 8(s) for s (;i-l';i) ,

(3.3)

c. € :Rz, i=1,...,.m ,

i

Si - L Si . ) d

(1i1) [ cos B(s)ds = p;, [ sin 8(s)ds = P i=1,...m ,
0 i

. - L -
hold with 9(;1-1’21) € C (si-l'si) i=1,...,m.

AL i a8 sy s
o

Proposition 3.2. 'rf:e function 8 € ﬁl(o,g) is the normal representation of a length-pre-

scribed extremal P-interpolant with knots p; (i=0,1,....m at 0= 50 < §2 < see < Em .

and length s = Em if and only if the conditions

(1) 8 e ct(0,51, 8(0) = 8(3) =0 .

(1) 8%(s) = cicos 8(s) + c‘i”sin 8(s) + A for s ¢ (sy_,.8) . !

(3.6) e, ¢ B, t=l...m , i

s s
t 3 1 i = 2

| cos 8(s)ds = p;, [ sin 0(s)ds = p;, i =1,....m ,

0 %

N
A = 8° - c. (p;~p; _,)
0 1-11111

- ® - -
hold with 6(;1_1';1) €Ci(s; ,08) U=1,...,m .
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Remark 3.1. The conditions E(Ei -0) = E(Ei +0) (i=1,...,m1), 8(0) = 0, and 6(§m) = 0

result in m + 1 conditions on the vector constants cl,...,cm. Both in Proposition 3.1 and

3.2 we have

(1) (et

1 - - 2 2, . ®,=
1+1-ci)cos e(si) + (ci+ -ci)sxn e(si) o .,

1

i=1,...,m~1
(3.7)

(ii) ci cos §(0) + c2 sin B0 +2=0 ,

cas 1 = - 2 . ==
(iii) ¢, cos 6(sm) + € §in G(Sm) +A=0 ,
where A is to be taken as 0 in the case of Proposition 3.1.
For use in Sections 4 and 5 wz state and prove

Proposition 3.3. The function 8 ¢ ﬁl(o,E) is the normal representation of an extremal
P-interpolant with knots p, (i = 0,...,m) at 0= 50 < vee < Em and length s = §m if

and only if the conditions

(1) 28(s) + ¢! sin 8(s) - c2 cos §(s) = 0 for

i i
se (s $), ¢, ¢ R
i=17747" Vi
(3.8)
. 1 1 - - 2 2 - -
(ii) (ci+1—ci)cos e(si) + (ci+1-ci)szn e(si) o .
i=1l,...,m ,
(111) 6§(0) =0, 8(s) =0 ,
- L -
hold with 6‘;1-1';1) €C (si-l'si) (i=1,...,m) and Sl = 0.

Proof. The forward implication folluws directly from Propositions 2.3 and 2.4. The converse
implication follows upon multiplying (3.8i) by 8(s) and integrating; if the integrated equa-
tion is evaluated at s = ;n and (3.8ii,iil) is used, the constant of integration is seen to

be 0. Thus, (3.8) implies

~19~
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2 1 = 2 = - -
5w - c; cos o(s) - <5 sin 6(s) = 0 for s € (si-l’si)

8eclio,8, i=1,...m ,

and the result now follows from Proposition 3.1.
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§4. Manifold of Extremals

As noted in the previous section, we may consider equjvalence classes of curves differir.

)
4
1
b

by a congruence, with representer satisfying x(0) = 0, 6(0) = 0, §(0) > 0; or (o) o if
8(0) = o.
Definition 4.1. The extremal interpolant E is proper if:

(i) E has nonzero curvature Ki at each internal interpolation node

844 i=1,...,m=-1.
(4.1)

(ii) Each internal interpolation node is a genuine knot, i.e., there is a dis-

continuity Ai; # 0 in the derivative of the curvature at ;0 i=1,...,m=1,

Definition 4.2. The m-tuple (kl,...,km) of nonnegative integers is the mode of E if there

are kj inflection points strictly between the (j-l)th and 3jth interpolation nodes; here,
an inflection point denotes a point of zero curvature and we note that 8 must change sign.
For a fixed mode (kyoeeesky), E = E(kl""'km) will denote the class of proper (m+l)-

extremal interpolants E in the mode (kl,...,km).

Proposition 4.1. & is a (finite-dimensional} metric space under the metric

a a
(4.2) 4(E,,E,) = max |——x,(s_ t) - ——x_(s_ )| .
172 ocg<r It 17E, at 2%,

Here sp and xj represent the lengths and Cartesian representations (parametrized w.r.t.

arc length) of Ej, j = 1,2, respectively, where x_.(0) =0, j = 1,2.

3

¢
Remark 4.1. We omit the routine proof. We observe that E is not complete. Indeed, if

each E(k X)) (m fixed) is embedded in the space of all extremal interpolants, with o
100 ky

metric described by (4.2), then the boundary 3E of E may contain an extremal interpolant

o N e b tiiis oot o ddaco s .ﬂ:\:ﬁ e
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which is not proper. We also observe that if E is close to Ez, then the configuration

1
interpolated by El is close to that interpolated by Ez. This would not be true if El, E2
were not restricted to a class E (see Example 4.2 at the end of this section).

(kl.---.km)

Now let GE - CIIO,SE] be the normal representation of some E ¢ E. 1If

0= so < s1 < ees < Sy = SE are the interpolation nodes of E, put OE(si) = ai, i=0,...,m
and a_ = (al,...,a ) € Tm—l. Setting ci = -Zui we have from Propositions 3.1 and 3.3

E m=-1

the existence of a unique multiplier u_ = (ul,...,um) [3 (lg)m such that, for k =1,...,m,

E

1 a2 1 2 .

(i) > OE(s) + uk cos OE(S) + uk sin OE(s) = 0, Sk-1 < s < Sy
(4.3) (1) 6.(s) - ) sin 0.(s) + w2 cos 6.(s) =0, s . <s<s ;
: E Yk E P €08 Pgts) =0 8y k ¢

and,
(iii) eE(O) = 0, OE(sE) =0 .

By introducing the more convenient notation

1
Bk = (Ak.Bk). Ak > 0, Bk e T, k=1,...,m ,

where

1 R 2
My -Ak sin Bk’ uk = Ak cos Bk '

we may rewrite (4.3) in terms of the multipliers Bk for k=1,...,m:

sin(8 (s) ~ B,) =0, s <s<s_, :

k-1 k ;

1 =2
(1) ) BE(S) A

(4.4 (i1) By (s) + A cos(By(s) - B) =0, s _, <8<8
and,

(1i1) eE(O) =0, OE(SE) =0 .

Since 6 = 0 !s not a proper extremal we must have §g(0+) ¥ 0. We consider it as

part of the definition of £ that .

-22~- .
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Proposition 4.2. 6_ ¢ cllo,sEl is the n.r. of an extremal E ¢

(4.4iv) 5E<o+) >0

for all E ¢ E. Geometrically speaking, [ contains only extremals which turn counterclock-

wise near the initial point,

E with inter-

polation nodes at 0 = s

(kl""'km)
< 8 < see < 8, = sE if and only if

0
A. GE satisfies (4.4i - iv) for some Ak > 0, Bk € Tl.
B. sin(Bi - Bi+1) ¥0
kl+...+ki

C. BE(0+) > 0, sgn Os(si) = (-1)
Proof: Since eE I3 C1 we have, by (4.4i)

(4.51) A sin(ui-Bi) - Ai+1 sin(ui-B ) =0, i=1,...,m1 ,

i+l
where a, = eg(si). ' 92(51-0) = eE(si + 0) if and only if
(4.5ii) Ai cos(ui-ﬁi) - A1+1 cos(u1-81+1) =0

The two equations (4.5i,ii) are equivalent to (4.5i) and sin(ei-si*l) = 0, Thus, the above
condition B. is equivalent to the condition that each interpolation node of E be a genuine
knot (see 4.1ii). There are ki inflection points of E between the (i-1l)th and i-th

interpolation nodes if and only if éE changes sign ki times between 81-1 and 8, i.e.

k

i .
(4.6) 8gn k;_, * sgn «, = (=1) ~, Ky = eE('i) .

Since by (4.4iv) éE(s) > 0 for all sufficiently small 8, (4.6) is equivalent to the above
condition C. Condition C. also implies that L #0 for i=1,...,m=1, thus condition

(4.11) is also satisfied.

a23-
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Remark 4.2. Condition B. also implies

(4.7) A, - Ai+1 ¥0, i=1,...,m1

Indeed if Ai - A1+1 = 0 then by (4.5i) sin(ai-Bi) = Sin(ai-8i+l)’ hence Bi = B,

B, = 8B + 7 (mod 27m), which contradicts B.

i i+l

We now define

=m m
. = {an ¢ R, :A; - AL, ¥0, i=1,...,m1}

™= {ger: sin(B,-8 #0, i=21,...,m1}

i+l)

B= BE = (Bl""'Bm)’ a = aE = (al,...,um) .

~m

By Proposition 4.2 each extremal E ¢ E determines a unique point B ¢ if x T

(klr---'km) E

In the next three propositions we shall describe the mapping E -+ B, via the composition of

E
two mappings: the homeomorphism

(4.91) J : B » (GEJBE)
of E onto J(E) ¢ T 1 x (i: x ™) ; and the projection

(4.9i1) M: (a,B) » B

of J(E) into ix: x T", which is a local diffeomorphism. The composition MeJ is a

global homeomorphism.

Proposition 4.3. The mapping J is a homeomorphism of E onto its image.

(kl""'km)

Proof: The continuity of J follows directly from (4.2) and (4.4); note that Bl....,Bm

can be expressed via (4.4) in terms of Ggr Kyo Aii. thus also in terms of

e! = arc tan xx'z/xﬁ'l. Suppose now that J(E) = (cE.BE). We show that E ¢ € is uniquely

and continucusly determined by its map (an.sg). By (4.4)

lin(O!(O) - 81) =0, cos(eg(O) - 81) <0 ,




i
i
[
3
3
|
i
|

hence o, = OE(O) = Bl + 1 (mod 27). The restriction of eE to [so,sll is now uniquel;

determined from

1
» 2
(i) GE(s) = (-ZA1 sin (GE(S) ~ Bl)l

(4.10) (ii) BB(O) =a,

with s uniquely determined from

(1id) OE(sl) =0y, OE(s) =0 for k, values of s in (0,s1)

1

4 = ' =
Indeed if there is an s) > s, for which GE(sl) GE(SI) “1

s < s < 8', hence éE(s) = 0 for more than kl values of s in (o,si). This clearly

then éE(E) = 0 for some

leads to an inductive process; indeed if OE is defined on [O,sil. one obtains the

restriction of OE to [si.si+1] from the initial value problem defined by (4.4ii) with

initial values ez"i) and ég(si). s is uniquely determined from

i+l

ez(si+1) =0 OB(I) = 0 for ki+1 values of s in (si.si+1)

The process is terminated at i = m-1 by replacing the condition OE(81+1) a0
éE(sm) = 0. Since the continuity of J-l is an easy consequence of (4.4) the proof is com-

by

plete.

We determine now the image set

(4.11) S = J(E ) .

=S
(kl""'km) (kl,....km)

The following are necessary conditions for (a,B) ¢ S:

(1) l.ln(u1 - 81) <0 i=1,...,m1 .

kpteootky o
(4.12) (ii) 1xf k! =0 for some 2 < £ < m=1 then (-1) sin(a, - u!_l)

(144) A lin(u1 - 81) - A1+1 sin(a‘ - 51*1). i=1,...,m1 .

e e




2

Conditions (4.9i and iii) express that 82 is positive and continuous at BirecesB If

E m-1"
some k{ = 0 then there must be no inflection point between 8.1 and 8y, hence
sin(eE - ai-l) does not change sign, or

sxn(eE(s) - al-l) . 93‘52-1’ >0 for s, _, <s<s, .

Using C. of Proposition 4.2, we obtain (4.12ii).
We now show that conditions (4.12) characterize the image set S completely. We
observe that (4.12i,ii) define an open set in the (3m-1)-dimensional gpace Tm-l x (i: x iﬂ),

vwhile equations (4.9iii) single out a 2m-dimensional surface in the open set.

Proposition 4.4. The image set J(E is
=fopositlon 2.2 (Kyreenrk )
m
S = {(a,B) € T 1 x (iz': x ™) : conditions (4.12i,ii,iii) hold} .

(kl,...,km)

Proof: We need to show that if (a,B) is such that (4.12) holds, then there are numbers

0O=38 <8

0 <co.<sm-‘

and a function e! € Cllo.szl

1 E

such that conditions A., C. of Proposition 4.2 are satisfied and moreover,

(4.13) 9E(Bi) =a, i=12,...,m1

(condition B. follows from the definition of ip). 8, and the restriction of 0! to

1
[so,sll are determined as in the proof of Proposition 4.3. Next, the restriction of GE to
[sl,szl (sz as yet unknown) is determined from the initial value problem
: ky % ;
6(s) + (=) [-ZA2 sin(6(s) - 82)1 =0 }
(4.14) -
0(:1) =a .
The solution is the n.r. of a simple elastica with inflection points at equally spaced

abscissas 9 vwhere e(ok) - Bz or 92 + 7 (mod 27). By (4.121 and iii) we have
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sin(a1 - Bz) <0, sin(u2 - Bz) <0 ,

and, therefore, 6(s) attains the values al and e, exactly once between any two consecu-

K’ Thus if there are k2 > 1 inflection points between sy and 8, there is

exactly one s, for which 6(52) = a if k2 = 0 and, say é(sl) > 0, then by condition

tive o

2
(4.12i1) sin(a2 - ul) > 0, which implies that 60(s) attains the value 02 for 8, > s

By the same arguments the values of

1'
with no inflection point between sy and S,:
and the restriction of OE to [s3,sdl,...,[s

] are determined. s = s

S3e---e8 m-2'5m-1 m E

m-1

and eE on [ are similarly obtained, except that the condition e(sm) =a is

sm_l.sm]
replaced by é(sm) = 0. The obtained function OE is in Cllo,sE] because of condition

(4.12iii), and it satisfies (4.13) and conditions A. and C. of Proposition 4.2 by construction.

Proposition 4.5. The projection MIS is a local diffeomorphism onto an open subset

M(k k) Of if x T". Thus S is a 2m-dimensional smooth (even analytic) manifold
1ok

(S is not connected if m > 1). The composition map MeJ is a {global) homeomorphism of

E onto M .
(kl....,km) (kl.---:km)

0

o_0 o] o 0 0
Proof: Choose any (a ,B) ¢ S, a = (ag,....ag) and B = (Al,....A:. Bl,...,Bm)- let U

denote the open subset of 'I‘m.1 x (i: x im) satisfying conditions (4.12i,ii). Define a
mapping ¥ : U > B?-l by
(4.15) vi(a,B) = A sm(ui - Bi) - Ai+1 sin (ai - Bi+1)' i=1,...,m1 .

With this notation, (a,B) ¢ U is in S if and only if va(a,a) =0 (i=1,...,m1). Now

¢i(ao,a°) = 0 and the Jacobian [awi/aa ] is nonsingular at (uo,ao), since it is a

3

diagonal matrix with diagonal entries

ar
.5

0.0 0 0 0 0
(a”,B") = A cos(ai - 31) - A1+

|

cos(ag - Bo )

i+l

@
[

a 1

(4.16)

o c U of (uo.ao) a neighborhood No of
Bo in i: x ™ and a Cl-mnppinq o of No such that u(no) - ao and U&(a(n).l) =0

We conclude there is, for every neighborhood U
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for all B ¢ No. This proves that M is a local diffeomorphism.

By Proposition 4.3 the mapping J is a homeomorphism of E(k k) onto S, If v
17" m

composite map M oJ is not a homeomorphism, there must be (a,B), (a',B) in S with

a ¥ a', say a; [ a'i (mod 2%). By (4.12iii) we have Ai s.i.n(cx.i - Bi) - Ai+ sin(ai - )

1

=0 and A, sin(ai - Bi) “Aa sin(ui - Bi+1) = 0. These equations imply aj = a, + 7 (noc

i+l

21) . But by (4.12i), sin(ai - Bi) <0 and sin(ai - Bi) < 0, which contradicts the pre-
vious conclusion. Thus Proposition 4.5 is completely proved.

Remark 4.3. It seems to be difficult to give an intrinsic characterization of the set

M Examples show that it does not coincide with iz:‘ x . It certainly contains

(kl""'kn) -

points B = (A,B) for each combination of the inequalities A H Ay A, H Byoeecihy
1

M~
Thus, M(kl""'km) and S(kl".'"km) have at least 2 disjoint components.

Remark 4.4. The following examples show that the results of this section fail if in Definition
4.1 either (4.1i) or (4.1ii) is omitted.
Example 4.1. Consider the 3-point interpolant Eo with n.r.
1
50(3) - (-2 sin Oo(a)l2 =0, 0<s

du

n
cecs +f

1 0 vVsin u

8y(s) + [-sin 90(-)12 -0, s

Here B_ = (1,0,-1-.0), a. =%, a, = 2%, o, = ¥, The mode h (0,0). E, violates (4.1li)
Eo 2 0 1 2 0

since éo('l) =0, For ¢ > 0 let the extremal xs of the same mode (0,0) be given by

Bze - (1100%0.:)' s0 that

1
2 2
O‘(l) = {2 sin Ot(l)l =0,

1
§ (8) + [-s1n(8 (8) - €))% =0, s
€ [ 4 ’




1

¢4 ee“l,e) is close to «

= 21 then ee(sl e) =2r - 8§ for some &6 > 0. Thus, for
L4

(=3

1

8 (s, ) = (2 sin 812 = -[sin(s + 3% ,

which is impossible. Thus, al(B) cannot be defined as a continuous function in a full

neighborhood of Bo .

Example 4.2. Choose = < g, < 21 -and consider the 3-point interpolant E, with n.r.

1 a

[

= "
s 2 du

6,.(s) -~ (-2 8in 06, ,(8)] =0, 8, <8 <8, =2 s
* * R {, v2 sin u

Here B!' = (,0,1,0), @y = ¥, @, = a,, a, = ¥. The mode is (0,1). E

since Ay *A,. PFor =< @ <2n let E be defined by the n.r.:

« Violates (4.1ii)

M % I& du 5
O(s) ~ [-28in 8(8))° =0, 0 <8 <8 =[] —/—/——
! = =1 %4 ¥/2sinu

i

1 ;

'y Y L i

8(s) - [-28in 812 =0, 3 <s<s,=2) —2_ . ;

1="-"2 0o Y2 s8inu

Here BE = (1,0,1,0), a,. =¥, @, = &, a, = v, and the mode is (0,1) as before. Since there

0 1 2
are extremals for all % < a < 2x, E cannot be defined by B and its mode.
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5. Perturbations of Configurations

In the last section it was seen that the extremal interpolants with m variable inter-
polation nodes (more precisely, those that belong to a fixed class E(kl""’km)) form a
2m-dimensional manifold. One expects that an arbitrary configuration P = {O,pl....,pm} can
be interpolated by an extremal interpolant (possibly by one from each class E(kl""'km)).
No solution of any kind exists for this existence problem. In this section we investigate
existence in the small. Does the set of configurations P for which extremal interpolants
exist have nonempty interior in R?m? More specifically, which P in Rzm are interior
points of this set?

To attack this perturbation problem one is tempted to consider the mapping from the
2m-dimensional set M(kllo..'km) that coordinatizes the elements of E(kl""'kn) (see §4),

or from another 2m-dimensional set of parameters, to the configurations in ’3n

which are
interpolated. However, this mapping is so complicated - it involves the elliptic integrals
which are the solutions of the extremal equations - that little in:ight is gained from its

consideration. For this reason we start with the extremals themselves, as defined by their

differential equations.

Let 8 : [0';n] b d Tl be the normal representation of a given extremal interpolant E,
which interpolates the configuration
!-’ i {0’51"..'Bm} "
so that _ - "
K = =1 *1 = _ =2
[ cos@=p,, [ sinf=py, 1=0,1,...,m
(5.1) 0 0
0= '0 < 31 < see < 'm .
Since we consider only extremals E with n.r. © near 8, hence with knots s, near ;i'

we choose € > 0, £ = + nin(i1 -3

3 ) and extend 6 to the interval (0,s), s = im + e,

i-1
by setting

B(s) «8(s), s <sc<s .
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We introduce two spaces of mappings from the interval [O,E]:

NBV = space of functions « : [0,8] * R of bounded variation V(x) and continuous
from the right with x(0) = k(s - 0) = 0 and norm V(x).
NBV, = space of functions 6 : {0,8] » Tl, which are locally absolutely continuous

and have derivatives 6 ¢ NBV, with norm sup|6]| + vid).

Both NBV and NBV1 are B-spaces. Clearly § as defined above is in NBV1 and 6 is in NBV.

If 8 < NBV1 is the normal representation of an extremal E which interpolates the con-

figuration P = {o,pl,....ph} at the nodes 0 = g, < By < o <8y < 8 (more precisely, we

speak of the linear extension of E to length s) then the following equations hold (see

Proposition 2.4):

? (s) +%63(s) =0, for <s<s

i i=1,...,m

T(s) =0, for
(ii) é(si -0 - 5(si) =0, i=1,...m .
s, 8,
1 1

(iii) [ cos @ =pj, [ sin®=pl, 1=1,...m .
0 0

It is easy to show that these equations characterize the interpolant completely.

We rewrite equations (5.2) by using the values

(5.3) é(si) =a, b(s, +0) = by i=1,....m

il

as parameters (but ao = 0, bn = 0 always).




(s-0)8%(t)ae = a +b (s )y 8 £s <8, i=l,...m

1-1 T Py-11878; i-1

i
(5.4) (i) . (8.8, [ s0émae, iea1,m .
-3
i-1

(111) [ cos 6 = pi, | sino = pi, i=1,....m
0 o .

Equations (5.4) define implicitly a mapping G from the space P c (Rz)m of configurations
P to the space [ of extremal interpolants E. To apply the Implicit Function Theorem we

introduce a mapping G on the produce space E x P to NBV x R x RZm as follows. We set

O = (6; BprecesBoi B)seonidg bo,...,bm_l), where

eem;vl;sisn, aien, bi‘n

D = NBY, x (3 ~¢, 3,+8) x X x®®

and define a mapping G = (g, ri, qi) with components g € NBV, K, € R, q € Rz , as

follows:

8
1 23
ga) =8(m) + 3/  (s-0)8 (trat-a _ -b_(s-s ), 5, <s<s;

g(s) = 8(s),

i
1 23
(5.5) (1) r, =a -a,_ -b_ (s~ ) +5 £ (s,-t187()at .

i-1

.1 ]

i .
(111) qi-f couO-pi, qi-f nine-pi .
0 0

Clearly, Equations (5.4) are equivalent to

GO,p) =0 .

X2
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In particular we have G(©,P) = 0, since we assume that 6 is the n.r. of the extremal ir-c:-

polant E for the configuration P. We need the Frechet differential Gé(e,P) [7] where

¥ = (y; tl,...,tn; LIRERTL N 80""’““\-1’

is an increment to ©. The components of Gé(G,P) {¥] are denoted by g°', r;. qi. One firds

readily
. 3 ° 2, .. 103 )
g'(s) = ¥(s) +3 Is (s=0)x" (B B(E)AE = 5 ;) (s=s, )t
i-l ;
() ;
S0y T B les ) v Rty S S8 s i
. - ]
g'(s) =¥(s), s <s8<s . %
(5.6) . §
(i) ¢} =a, - —8, As+ b . -Laed e - ks0e, + 2] (s,mt16% |
17% 7 %4 7 Fiats I R L B i A A v '

i-1

8 81

i
(1ii) (qi)‘ = -I Y sin 6 + t, cos 01, (qi)' = f ¥ cos 6 + t, sin ei
0 0

Here we have used the notations

(5.7 K =0, 91-0(31), xiue(si), Ais.'i-si-l ’

and the relation

-]

i 3 . o
[ &b +0)-bs -0 =
$i-1

- x(,i -0 '

N

i-1

which follows from (5.2i) and (5.3).
The continuity of G' near (8,F) is readily ascertained from (5.6).
We can now state the main result of this uct'ion.

Theorem 5.1. 06(5.5) is an isoworphism of

wv, x ¥ x & x & onto v x B x (RH®
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if and only if (6.P) satisfies the following hypothesis:

(A) The system for the unknown ¢ ¢ NBVY,:

1
E’ + % ;2lil =0 on (;1_1,;1)' i=1l,...m
(i)
tbso on (§m,§) B
gi
(5.8) (ii) Aii + bk % v sin(§-§i) =0, i=1,...,m ,
s,
1 - -
(iii) [ ¢ cos(8-8,) =0, i=1,...,m ,
0 1

has only the trivial soclution ¢ = 0. If (A) is satisfied then there are neighborhoods
N_ in D and N_ in (112)m of ® and P respectively and a diffeomorphism I,
(2] P

P R
-] P

such that © ¢ Ne defines an extremal P-interpolant E for P = [(6).

Remark 5.1. Explanation of the notations used above and in the following:

9i = B(si). Ky = e(si). b = W(si) '

Bk = k(3,40) = K(5,-0), A0 = ¥(5,40) - ¥(5,-0) ,

in particular AOE = k(8,+0), Ami = -E(Em-O), etc.

Proof: We first demonstrate the injectivity of the bounded linear mapping 66(5,13) under

hypothesis (A). Thus, assume that for some V¥:

qé(é,i)tvl =0 .

Then we have by (5.61):

-34-




oo -2

v gty = 0 on (§i_1.§i), i=1,...,m

(5.91)
. v =0 on (§m,§) . :
;i :
L 3 = 422 _1-3 -
O R A S LU YL
s,
i-1
(5.10)
T 0oy T BBt byt =0
and using (5.6ii)
(5.114) &(51-0) ~a, +k(5;-00t, =0, i=1,...,m
Also by (5.6i) )
1
(5.11i1i) ) w(si+0) - ui + biti =0 . %
' Since Si = E(§i+0), the last two equations yield j
y
(5.12) Aié +t k=0, i=1,...m .

The remaining equations (qi)' = (qi)' = 0 (see 5.6iii)) are equivalent to

i
(5.13) t, =] ¥ysin(@-8), i=1,...,m .
1 0 1
s,
1 - .
(5.9iii) [ v cos(8-8,) =0, i=1,...m . 3
o

When (5.13) is substituted in (5.12), one obtains

s
. B4
(5.911) 80+ 8k [ bein@-8) =0, L=1,...m .
o i

By hypothesis (A) the equations (5.94i,ii,1iii), which coincide with Equations (5.8), together ‘
with § < NBV, imply ¥ =0 on [o,inl. (5.91) then implies % = 0 also on li_.il. Then

by (5.13), ¢, =0 (i=1,...,m, and by (5.11), a

i =0 (i=1,...,m. Finally, by (5.10), }

i \
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8, =0 (i =0,...,m1), thus ¥ =0, hence cé(é,i) is injective.

Conversely if hypothesis (A) is not satisfied, i.e. system (5.9i,ii,iii) has a nontriv.a.
solution Y € NBvl, then determine the ti from (5.13), the ai from (5.11) and the

from (5.10). Y = (y; tl,...,tm; Brreees® s Bo,...,Bm_l) is then a nontrivial solution of
Gé(é,l-’) [¥Y] = 0, thus Gé(é,f’) is not an isomorphism.

To show surjectivity of Gé(é,l;) onto NBV X " x m2m' assume we are given h < NBV,

2 . . .
uien,vien (i=1,...,m). We must find 'J:eNBvl, tiell,aielk,ﬁisll, such

that (see 5.6)
(i) g'(s) =h(s), 0<s<s
(ii) ti =u, i=1,....m .

. 1., 1 2 2
(iii) (qi) = v (qi)' = vy i= l,...,m .
In particular, (5.141i) requires (see 5.6i)
;i
" - 3 - -2e 1 - -
¥is,-0) + 21& (3,-t)k Y - 3k, _ 4,8t )
i-1

- “i—l - Bi-lAis + bi-lti-l = h(si-O)

and (5.14ii) rquires (see 5.6ii)
-=3

1
T G LTS

i -

The last two equations imply

(5.161) ¢(81-0) -a, + nc(si-O)ti - h(si-O) ~u .

(5.14i) also requires




" - A - -
(5.1641) 0(5100) -a, ¢ x(ll#o)t1 - h(l1¢0)

i
We therefore must have

" - " - E
(5.174) 0(0‘00) - 0(1‘-0) - A*x:‘ + A‘h +ug, i=l,...,m

1 The last equations (5.14iii) are (see 5.6ii1)

s s
' (5.1714) - Io‘* sind vt cos B = vi. ]o‘w cos B+t stnid - vf
? The general solution y ¢ N)V1 of (5.141) is the sum of a particular solution and the 4
linear combination of 3Im functions with the coefficients LICRRRTL Bo""'ﬂm-l' tl....,tm. :
When this ¢ is substituted in (5.174 and ii) a nonhomogeneous system of 3Im equations for '
the unknowns a 81. ‘1 is obtained. The homogeneous part of this system corresponds to the
% case h =0, u - 0, v - O, and it has only the trivial solution a, = 0, 8, " 0, tym o

as shown in the first part of the proof. This demonstrates the surjectivity of Gé(é,ﬁ)
and finishes the proof of Theorem 5.1.

The utility of this theorem ia illustrated by the fact that it readily implies the follow-
ing important result.
Corollary 5.2. Supposs P = (0, Sl.....E') is the ray configuration E‘ - (31.0) (L =1,....m
with the trivial interpolant E. Then hypothesis (A) is satisfied, hence the conclusion of
Theorem 5.1 holds.
Proof: 8 » 0 in this case. If wa put

x

(5.18) = x, ;1 - x s=x, yx) = [ ¥
0

then y(0) = 0 and Equations (5.8) become

y(‘) =0 on ‘xi-l'xi)' ie}l,.../m

y" =0 on (xn,;)

(5.19)

y*(x,40) - y"(x,=0) = 0, 1= 1,..c,m
y(x‘) -0 iel,...,m
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while y*' ¢ NBV i.e, y" € NBV, in particular y"(0) = O. These are exactly the equations

1'
for a natural cubic spline that interpolates the points (xi,O) (i =0,...,m)., It follows

that vy(x) = 0, and the corollary is proved.

Remark 5.2. We briefly draw a connection between the above corollary and natural cubic spline &
interpolation. The mapping T from the space of configurations P to the space of extremal

interpolants E is implicitly defined by G(®,P) = 0. Perturbation theory looks for a pair

06=28+y, PP +2(z= (zl,...,zm}) close to the initial pair ©,P for which
(5.20) cé(é,p) [v) + cl;(é,p) [z2) =0 .

It is readily seen that this is system (5.9i,ii,iii) except that (5.9ii) is replaced by

8
i
. == 2 = 1 =
(5.21i) % ¥ cos (6 Oi) =z cos ei z; sin 9i .
Also, Equation (5.13) is replaced by R
8
i - = 1 - 2 -
(5.21i4) ti - L ¥ sin(e-ei) + z, cos ei + z; sin ei .

Now suppose the initial configuration P and the interpolant E are the ray configuration

and trivial interpolant, as in Corollary 5.2. Further suppose P is the configuration

P = ((xo.yo): (xllyl)v---'(xmlym)}' xo - yo =0

with the X, = 31 - zi and zi small. Then (5.21i,ii) become (in the perturbation
approximation)
x
1 -

(5.22) !o ".yi' Bt v,
moreover

s s s s s
(5.23) x(s) = f cos O = f cos Yy~ g, yis) = f sin 8 = f sin ¢y ™ f ¥ .

0 0 0 0 0
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The perturbed extremal E is now the graph of the function x + y(x), which satisfies Equa-

tions (5.19), except that the last equation is replaced by y(xi) b AT Thus y is the

. natural cubic spline that interpolates the data (xi,yi) (1 =0,1,...,m.

We have shown that the cubic spline interpolant is the result of linerization of extremal
interpolation (in the sense of making f:zdl stationary) near the trivial interpolant for the

ray configuration.

Remark 5.3. The differential equation that appears in hypothesis (A)

(5.24i) Vv +e3tao

where kK = § is defined by the equation

(5.24ii) T + % 8 =0

can be completely integrated by quadratures alone. Indeed ¥ = 1 is clearly one integral;

(5.251) 01 =K
is another; for 3'1 = 0“) and 6“) + (3/2)525 = 0. The third one is
(5.2511) wz(s) = sx(s) .

In the special case where «(s) £ cs, three linearly independent integrals are
2
(5.251ii) l, 8, 8 .

In the remainder of this section we discuss the replacement of hypothesis (A) by a
simpler condition, which requires only that the value of an explicitly given function (involv-
ing many quadratures) at ;m be ¢ 0. PFor this purpose we introduce a condition on arcs of

simple elastica. The arc of E from 8 to s, is said to be ordinary if it is either

i-1 i

straight or

=1 =1 , = 2 _ = & _ =
51 : - (p1 - pi-l)l(‘i-l) cos 0* + x,_luxn 011
(5.26)

-2 =2 - 2 - a - a - -
+(py =Py [(x, )7sin 8, - {3608 9,1 ¢+ ‘1-1'1“(’1-1 -8 A0 .

-39-

Al




Rl AL <t S AT ST P13, st sl i Al it e A " v oo

One sees readily that only exceptionally is such an arc not ordinary. For example, the ar-

=0 tos,, where «

from lo 1

0= 0 Eo ¥ 0, 1is not ordinary if and only if

-1 - -2 -
p1 sin 01 - p1 cos 01 =0 ,

i.e., the chord PPy is tangent to E at 51'

Theorem 5.3. Suppose the extremal E consists of ordinary arcs only. Let wo.wo(O) =1,
be the solution of system (5.8), exclusive of the condition on Am@ (wo is explicitly con-
structed below). Then hypothesis (A) of Theorem 5.1 is satisfied if and only if

;n

(5.27) Vo8, =0 + k(3. -0 [ ¥ sinE-8) Fo0 .
0

Proof: Let 01, xi be the integrals of Equation .; + (3/2);2$ =0 (case «x # 0) for which
01(31_1) - 01(11_1 +0) =0, .1('1-1 +0) =1
(5.28)

Xy(s, _y) = xi(.i-l +0) =0, x;(s;, ;, +0) =1 .

These are line.. combinations of 1, 01, #2. One finds easily

- 2 - = - -
Oy o iy )T m ey gk k(8 =8 0]

(5.294)
- 2 O 3 - -
Xy = Pylm2ry gk g ¥ 2Rk * 3Ry T sy 0]
where we have used the abbreviation
2 2 ,.1,- 4
(5.2944) 1/pi - 2(:1_1) + 2(‘1-1) .

We construct V¥, successively on the intervals 1;1-1';11 (i1 =1,...,m). On [0.;1] we

have since ¥ (0) = 1, 60(0) = 01
(5.304) ¥ = 1+ 9000,

with oo satisfying condition (5.9iii):

-40=-
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s, ;1
(5.3044) !o oo-(3-3°) + ¥y (0) !o N eo.(6-5°) =0 .

One finds the last integral to be 9161.

and (5.30i) gives ¥, on (o,il). (If x=0 on [o.ill then one finds V(s) =

1-3(s/3)%). Assume ¥, has been determined on (0,3, \1(i <m). Then ¥ (3, ) and

Vo(8,_, - 0) are known, hence V,(3, ;) can be found from condition (5.84i).

8141

(5.31) Vols, ) = Vo8, _,-0) + 8, k& & v sin(8-8, ) .
Then if « Z 0 on l;j.-l';i] we have
(5.324) Vo = Vole ) + ¥o(s, )X, + w8, )e,
and to satisfy condition (5.9iii):
$i-1 . o S .. .
% Vo cos(B-8) + [ty (s, ) + ¥o(s,_ )X lcos(8-8,)
$1-1
(5.3244) -
55
+ 9, [ ¢ com(d-8) =0 .
$i-1

One finds, using (5.291i) and
H s
i
=1 =1
[ cosBup -p 0 [
$1-1 841

$
= -2 -2
sin 8 = p; =Py,

that the last integral in (5.321i) is 0,8, # 0. Thus 30(31_1) is uniquely determined from

(5.3214), and (5.324) gives ¥, on (s _ .3,).

In the omitted case X = 0 on ‘;x-x';tl' (5.32141) are replaced by
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| - . - - l
(1) wyis) = v’o(’i-l) + *0('1-1”"'1-1) +
A Yo cos(8=0.) + ¥ (s, ,)(s;~8, )

1y - = = .3
300(31_1)(31 51_1) =0 .

The conclusions remain the same as before.

With ¥, found on [o,inl there remains condition (5.9ii) to be satisfied:

[ - & - n
(5.34) Vo (3,-0) + k(3.-0) [ ¥, sin(@-8) =0 .
0

System (5.6) has a nontrivial solution if and only if the constructed integral "0 satisfies

{(5.34). This proves the theorem.

Example 5.1. To illustrate the utility of the preceding theorem consider the configuration
P= {(010)1 ("o)' (.'b)}
with the extremal interpolant E whose n.r. 8 is defined by:

8(s) = 0 0<s
(5.35)

1/2
'

8(s) (B/b) I1sin B(9)) a<s

Here 8 and s are the definite integrals.

L 4 v
B = f linl/z, s =a+ (b/B) I sin~
V] 0

172

That E does indeed interpolate the point (a,b) follows from

s - LAY LIV
[ cos § ds = [ (1/8)cos t atw (b/B)f sin~/“cos = 0 ,
a 0 0

H "
[#in G das = (b/8) [ sin » sin" 2 ap
a 0




Using the construction of the preceding theorem, one finds by straight forward computation:

Vo(s) =1~ 3s/m?, 0csca ,
0,00 = e is-alite), X (s) = 26/8)26(8)

Vo) = - 2= Qe e w, acsci

8 2
¥, (5-0) + k(a- §-5,) =5 4 £
¥y (8=0) + k(s 0){)% sin(3-8)) = =+ >0 .

By Theorem 5.2 unrestricted perturbation of the 3-point rectangular configuration P s

possible.

Even for this simple example we were not able to prove this result in the more direct way,
by expressing the parameters of the elastica spline in terms of the coordinates of the inter-

polated configuration.

Example 5.2. Let P be the “hair pin configuration”

L
P= {(,0, (0,8, (0,00}, &= I (2 '1n)1/2 .
0

with the extremal interpolant E whose n.r. § is defined by:
8(0) = 0

3 - ¥ -
6(s) = 12 8in 8(81%%, 0<s<o: = (2 0am7V2

0

= -2 sin 812, o<s<20 .

Then x(0) = x(0) = x(20) = 0, Ak, = x{g+0) - x(0-0) = 2. One finds readily:

1

9 =38 , X () =k(s), O<mcO ,

0,08 =2 c(s), Xy(8) =k(s), C<sc20 .

. 1 P ) s <o ¢
bois) = -
14+ 28(s), 0<8<20 .

-3




Then
20

¥ (20-0) + k(20-0) [ ¥ sin(d-2m
0
§ . 20 . .
=-28 - [[ sin 8 + [ (1 + 26k)sin 8}
0 [}

- =28 - [6-6-28] = 0 .

By Theorem 5.3 hypothesis (A) is not satisfied, thus it cannot be concluded that the hair pin
configuration with the extremal interpolant E permits perturbation. Indeed, one can show
directly that if P is replaced by the perturbed configuration Pe = {(-€,0), (0,8), (€,0);
there exists no extremal interpolant close to E no matter how small € ¥ 0 is. On the
other hand, if B is replaced by R {(0,0), (0,8), (0,¢)}, which is also close to B,
then there is an extremal interpolant el: _near E, e! coincides with E for the arc from
(0,0) to (0,8), the remaining arc is the simple elastica joining (0,8) and (0,e). Thus,

we have an example of singular behavior taking place in the perturbation from P to P

~dd-
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§6. Special Cases of Open Extremals j 3

We study in some detail in this section extremal P-interpolants for some special con-

figurations.
A. Two Point Extremal Interpolants
Let P be the configuration P = {po,pl}. Py ™ 0. For an extremal E with normal repre-

sentation 6,8(0) = 0, we have by (3.3):

-

(1) 8¢ ctfo,3), 8(0) = 5(0) = 8(3) =0 |,

{6.1) (ii) 52(8) = clcos 8(s) + czsin f(s), 0<s8<s ,
s = 1 s - 2
(i1ii) fcosa-p,fsine-pl .
0 0
(6.1i) implies ¢::l = 0 and czsin 8(s) = 0. Clearly, either c2 = 0, yielding the extremal

S(s) 20, p, =0, p, = (3,00, or, c? 4 0. In this case we write c2 = -2/L. Differentiation

of (6.1ii) gives by Proposition 2.4 the differential equation,
(6.2) 28(s) + cos B(s) =0, 0 <8 <3 .

¥hen this equation is integrated over (0,8) and 8(0) = 8(8) = O is used, one obtains the

first of equations (6.1iii) with pi = (0. From the equation,

(2/2)8% = -gin 8 ,

it follows that -x < § 0 if 2>0 and 0 < ] <% if L < 0. Since the choice £ <0
amounts to a rotation through 7 of the extremal corresponding to 2 > 0 or, to a change in
orientation transforming 8§ into -5, we may assume % >0 and ~w < 8 < 0. In this case,

p: = d; = -lpo - pll in the second equation of (6.1iii). We may rewrite (6.1iii):

s s
(6.1111") Joos =0, [sin b =-a . .
0 0 '
. From (6.114), 6(3) =0 4s equivalent to sin 6(s) =~ 0. Since sin f(s) <0 for 0<s <s

and & is continuous, there are only two possibilities: 8(s) = 0 or 8(s) = -w.
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Altogether we have shown that (6.1) may be replaced by the simpler system

(1) 28%(s) = -sin B(s), 0 <s <3 B(0) =0, B(3) =0
or =%,
(6.3) : )
(i) [sin 8 =-a .
o]

If s is interpreted as physical time, 26 as the displacement along a circle of radius ¢,
then (6.3i) represents the pendulum equation with pendulum length £, unit mass and unit force
downward, starting from horizontal position with velocity O at s = 0 and reaching velocity
0 againat s =35 when 8§ =0 or =-w. The pendulum swings from horizontal position 8 = 0
at s = 0 through one or more half-swings to horizontal position at s = 8. The kinetic
analogue of the elastica equation was discovered by G. Kirchhoff; see [8, p. 399).

One interpretation of the interpolation condition (6.3ii) is that the time integral of the
kinctic energy 3(t$)? divided by the maximum kinetic energy, L, is the prescribed "minimum
time" d. The length of the pendulum is the main unknown of the problem.

The solution of (6.3i) for vaﬂ.ous values of L can be derived from the solutions of the

same system for £ = 2. Indeed, the transformation
(6.4) B(s) =8(/278 3), 3= V172 3

converts (5.3i) to the "normalized system":

(6.5) 52(5) = -gin 8(s), © <s < 8; 6(0) =0, 6(s) =0 or -x .

The solution of the pendulum equation (6.5) with 8(s) = =7 is well known. It is

explicitly given by
(6.6) f(s) = - % - 2 arc sinlz-l/zsn(z‘llz(s - %))]. 0<s 5_; '

172~

where 2 /%3 is the half-period of the Jacobi function sn(u) = san(u; 2-1/2

) and arc sin

- - - 82
is the branch of the inverse of sin with range [~ 1. %]. For 8 and U = U(6) = f 92
0

LY U3
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we find in terms of the complete elliptic integrals of the first and second kind [13]:

1
(6.7) (4) - I /___ -2z —=8 — . 25k
0 Ysin § ° Ju-t%) a-t¥2)
and
(ii) I /aln 6 a8 = 2/7 I = 2/3128(27 % - x(2"V?)
0 vi1-t"/2

The analytic continuation of & (also denoted as 8) to all of R is given by 8(s) = -8(-s)

for s <0 and

8(28-s) for s < s < 2s
(6.8) 8(s) =

\8(s-2kS) for 2ks < s < 2(k+1)5, k = 1,2,... .
It is seen that 5[0 25) also solves (6.5), the value at the new boundary point 28 being O.

In general § (k = 1,2,...) solves (6.5), with 8(ks) = -5 or O depending on whether

{0,ks]
k is odd or even. These are all the solutions of (6.5) with free right end-point.

We now use the solution § of the normalized problem to express the general solution of

the boundary value problem (6.3i) for fixed 8> 0. Itis given by

(1) 8(s) =k 2
8

s}, 0<s<s ,
(6.9)

(i) & = 2(3/k3)2

where k is any positive integer. To satisfy the remaing condition (6.3ii) we must ii\wve

-] $ ~
-d = [ 8in B(s)ds = [ sin 8(x £ g)as =
0 0 8
e i
?fo sin G(l)ds---i-u '
hence
(6.10) 8 = (8/0)a ,

independent of K.
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We write 3k for the solution corresponding to k (= 1,2,...), Ek

parameter value in (6.3i) and Ek for the value of the curvature functional for §k. Thus,

(1) §(9) =BkTe), 0Oc<scs= (3/Da ,

(6.11) (1) ¢ = 204/ % = 2(3/x8)2, x =1,2,... ,

; »
(i) G, = [ 82sras = x%0P/a = K2 (5/m0 .
0

All these solutions have the same arc length s = ds/0 * 2.2d. Also 3k(s) = 51(ks) for
0<s<s/k and 3k(s) = 51(ks-§) for s/k < s < 25/k, etc. Thus the curve represented by
5k consists of k congruent arcs, all similar (contracted by the factor 1/k) to 61' The
curve whose normal representation is 5k is characterized as that arc of the simple elastica
whose endpoints are inflection points and which has k - 1 internal inflection points (it

belongs to class E in the notation of §4). For the above physical interpretation the

(k-1)
result means: If the ratio of the time integral of the kinetic energy to the maximum kinetic
energy (in a motion from the horizontal to the horizontal position) is to be the fixed number

d then the pendulum must have one of the lengths £ = 2(d/kt'1)2 (k = 1,2,...) and the

k
pendulum makes k half-swings in total time s = (8/0)d.

We susmarise the results in

Proposition 6.1. There are countably many extremal P-interpolants Ek interpolating a two-point
configuration with |po - pil =d >0, onefor each k = 0,1,2,... . E, is the trivial ray
interpolant; Bk is an arc of the simple elastica with inflection points at the terminals and
k - 1 internal inflection points. The normal representation §k of Ek is given by (6.11),
where & is the elliptic function (6.6). Each of the Ek (k = 1,2,...) has the same length

s = (;/ﬁ)d, where ; and ﬁ are given by (5.7). - The extremal value of the curvature

functional for E, is O = xzﬁl (k = 0,1,2,...), where U, = U°/d.

k k 1
Remark 6.1. It is shown in [5] that none of the extremals El' Ez,... provides a local

mninimum,
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B. Ray and Rectangular Configurations.

Corollary 6.2. Suppose P = {O,pl,...,pm) is the "ray" configuration where p, = (s,,0)

and 0 < 8 < see < s Countably many nontrivial extremal P-interpolants are obtained from ;

the 2-point extremals of Proposition 6.1 as follows. Let x represent any of the nontrivial

(0,s,]
extremals for the configuration {O,pl}. Define §[; : as one of the (pl,pz} inter-

1’72
polants of Proposition 6.1 or the negative of it so that §(§1 - 0)-=;(§l + 0). Continue :in thic
way to the intervals [32,33],...,[§m_1,§ml. The obtained curve represented by X is an

extremal P-interpolant.

Corollary 6.3. Suppose P = {po.pl,...,pm} is the "rectangular" configuration where the

angle between pi—lpi and pip1+1 (i=1,...,m1) is either 0 or * “/21 Let x represent a

P-interpolant such that the segment from pi to Pis1 (i =0,...,m - 1) is any of the extre-
2

mals of Proposition 6.1 (including the trivial one) and so that x is continuous. In this way

countably many extremal P-interpolants are obtained for any rectangular configuration P.

C. Angle-Constrained Two Point Extremal Interpolants

The boundary conditions
(6.12) x(0) * (py=By) = Yoo X(3) ¢ (py=py) = v, O <, < |py-pol
are added to the problem of Section A, replacing the zero curvature endpoint conditions.

Proposition 6.2. There are countably many extremal {po,pl}-interpolants constrained by con-

ditions (6.12) if Yo = Vq-

Proof. Suppose 8 is the normal representation of the sought extremal. It is easily seen
that one can normalize § so that 8 satisfies equation (6.3i), except that the values of

6 at O and s arenot O and -n, but given numbers 6.,0,, 0 > 8 > - %, 8, = 8, or

01 - 00 - n. It follows that the solution of the problem is a symmetric arc of the curve

(6.91), with k even if Oo - 91, k odd if 60 - 01 + n, scaled and moved sc that the

terminals are PyePy -




D. Regular Configurations.

Suppose P = {po,pl,...,pm} is a "regular" configuration, by which we mean each segment
pipi+l (i=0,...,m~1) is of the length d and makes the same (exterior) angle a,
7 < a £ 27, with the following segment p,

1+1pi+2. We seek an angle-constrained P-interpolant

x for which

(6.13) X(0) * (py=py) = X(s) * (p-p, ;) =d sin3 .

Corollary 6.4. For each regular configuration P = (po,pl,...,pm} there are infinitely many
extremal P-interpolants constrainedby the condition (6.13), which consist of m congruent seg-

ments.

Proof. Let 2z represent one of the infinitely many extremal {po,pl}-interpolants E, of

length s constrained by

11

Z(0) (p,-p,) = 5(51) * (p-py) = 4d sin-;-

and such that z(0) x (pl-po) = - ;(El) x (pl~po). Let x represent the uniquely defined
P-interpolant E that extends EO by congruent pieces. Then x has continuous slope and

curvature and satisfies (6.13); hence E is one of the sought extremals.

E. Length-Prescribed Two Point Extremal Interpolants.

We assume now the length s of the extremal {po,pll-interpolant E is prescribed.
Suppose 8 is the normal representation of E. With the proper choice of the coordinate sys-
tem we conclude, using Proposition 3.2, that 8 must satisfy the following conditions (assuming
s > a)

(0) = 8(3) = 0 ,

Dl

(i)

(6.14) (11) %8%(s) = -sin B(s) + A, 0<s<3 2>0, AeR ,

N |

s s
(ii1) [ cos 8(s)ds = 0, f sin 8(s)ds = -d .
0 0

U rt e o e A vy SO R e A A
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Set 5(0) - 80(- LR %)r then

(La1%) \ = sin 90 .

We may again interpret Equations (6.14) as describing the motion

In particular, =1 % 2 <1,

), of a pendulum swinging from some position 60 where o in fixed time s to another

position whore ® = 0 and so that the time integral of the kinetic energy satisfies a certain

condition.

By (6.14i1), B8(8) = 0 if and only if 6(s) is 8, or - - 6. Tha condition

]
f cos § = 0 follows from (6.14ii). Thus, (6.14) may be replaced by the simpler system
0

2

(i) $8%(s) wsin 6, - sin B(s), O < s <& §(0) =8

pajeo

0 o !

0(s) = 00 or =1 = 00 ,

8
(i) [ sin 8 = -d .
0

We make the transformation (6.4) again, to obtain the normalized system:

(6.17) 0%(s) = sin 0, - sin 0(a), 0 <8<, B(0) =8, 6(a) =-n-8 .

The solution is given by

(6.181) 0(a) = émeo) - - -:- - 2 arc sinlq |n(2-1/2(|-i/2)x qz)l ’

q = |sin(n/a + eo/z)l '

where 2725 ia the half-period of the Jacobi function sn(u; qQ):
-n=0 ™0
0 0
(6.1841) A= 5(90) - - f ——4‘—-—-/___0__.— - f —/__——-_i-i—_r_-o' -
00 sin 60 - gin 6 -go sin 00 + gin

2 f "/2—-—_6-0—-—,_
e
-eo sin 00 + sin @

=f]l-



We observe that 5(00) increases mongtonically from O to = as 60 varies from --/: =<

s 5,5
w/2. For d=- [sin® and U=/ 6° we have

0 0
n/2
(6.18ii1) d=4d,,) =2/ —',—.%ae .
o - sin 6, + sin 8
60 o
.. w2 __ . 3
(6.181v) 0=06y) =2/ /ain 8, *+ #in 6 do . : 1
-eo
We also observe the identity

1
1
i
{
(6.19) 8(00)81n 00 + d(eo) - U(eo) . g
¥

The analytic continuation of & (also denoted as &) to all of R is given, as before, {

by (6.8). Then we put
(1) Ek(s)-é(xgs), 0<s<s, k=1,2... ,
: (6.20) ]
4 () g, =28k . C

These quantities still depend on 00. 8. must be determined so that the last condition

0

- - i

8 - 8 e - i

(6.20411) -a = [ sin § (s)ds ~ [ sin B(kis/B)as i
0 0 i

-~ i

5% n i %

, - < sin 8(s8)ds = = — 4(0.) !
s CICN) 0 é

i

!

is satisfied. Thus 6, is determined from the equation

0

(6.21)

where d and s are given in (6.18). As 8, varies from -v/2 to O, 5(60) increases
n/2
from 0 to 2 f llnllz

640 and then decreases from this value to -= as eo varies from .
0

82w
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0 to m/2. Clearly d(8,) = 0 for some 6, betweer O and m/2 (8, ™ 40°). The ratio
a(eo)/;(eo) can be seen to decrease monotonically on [-7/2,6,] with values in the entire
interval [0,1). Therefore, for any 0 < d < s, there is a unique eo in [-n/2,6,) such
that (6.21) holds. For this unique eo, 8 = S(eo) is determined according to (6.18ii), ther
Ek and £, from (6.20). Together with A = sin 8, these quantities satisfy the original
system. ﬁ(eo) is given by (6.18iv) and the value of U for ék by

s

- 22 2
(6.22) U:=f 8 (s)ds =k

é(eo)

e, .
0 H 0

Altogether we have proved

Proposition 6.3. There are countably many extremal (po.pl}-interpolants El,fz,... of pre-
scribed length s > |P0‘91|- Their normal representations are given explicitly by equations
(6.18) and (6.20), with the angle of inclination 90 at Py determined from (6.21). For the

value of the functional U, the relation ik = k201 (k =1,2,...) holds.

Remark 6.2. The curves of Proposition 6.2 are subarcs of inflexional elastica (cf. Remark 2.4).

For illustrations see [8, p. 404, Figures 48-53].

Remark 6.3. In the beam interpretation the joint at p, exerts a force R whose tangential
component is sin 00/2 and whose normal component is cos eo/z. Thus R Aacts along the line
joining Py to Py The magnitude of the force is 1/8. For fixed s and 4, the force

Rk in the mode E, has magnitude kzkl. For 90 < 1/2 the tangential force on the joints

k
is a pressure, for eo > n/2 it is a pull.

53~
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§7. Examples of Closed Extremals

Let P = (po.pl,....pm} be a configuration as in §2. If x € H® is such that

2
x(ti) =P; (i=0,...,m) for some O < to < see < cm < 1, and besides x(k)

for k = 0,1,2, we say x represents an admissible closed P-interpolant with knots P

(k)

(0+) = x " (1-)

Suppose x represents an extremal closed P-interpolant, i.e. x makes the curvature functional
U stationary in the family of admissible closed P-interpolants. Then the graph of x is a
closed curve which has continuous curvature everywhere, and the curvature is continuously
differentiable at all points other than the knots.

In this paragraph we examine four classes of closed extremals:
A. Closed extremals of prescribed length with no knots.
B. Closed symmetric extremals with two knots.
C. Closed extremals for rectangular configurations.

D. Closed extremals for regular polygons.

A. If x represents a closed extremal with no knots, of prescribed length 8 > 0, para-
metrized with respect to arc length, «(s) its curvature at s, then one finds, as in

Proposition 2.3, that

W) xec’tosl, x®© =x® @, k=o0,1,2,
(7.1) (1i) 2% + 33 x - Ak =c, c€ R® ,
s
i) A= 2 .
59

Conversely if x satisfies (7.1) then x represents a closed extremal with no knots, of pre-

scribed length s, parametrized by arc length. For the normal representation 8, where

-1 ' -2 S
x'(s) = [ cos 8, x“(s) = f sin 6, (7.1) gives
0 0

~54=




s s
(i) 8ec0,8, [cos B =[sinB=0 ,
0 0

8(3) = 8(0) + 2km (k = 0,+1,...); B8(0) = 8(3) ,
(7.2)

(ii) 52 = clcos 8+ czsin 8+ ,

2

Dl
.

(iii) A =

ol {e

J's
0

Proposition 7.1. For each k = 1,2,... there exist exactly two closed extremals with no knots
of prescribed length S > 0. These are the circle of radius 5/(2kn) transversed k times
and a contracted figure eight configuration traversed k times.

Proof. We can omit (iii) in (7.2) since it follows from (i} and (ii). We write A 8in(8 + a)
with A >0, aeT for clcos 8+ czsin 8. If B represents an extremal then 8 - a
represents the same extremal rotated by the angle a. Therefore, (7.2ii) may be replaced by

52 = A sin 8 + ug. where wg > 0. (ug = QO means A = 0, which is impossible by (7.2iii}). We

may also assume k = 0,1,..., in (7.2i). Thus, (7.2) is replaced by

s s
(4) 8ec0,8), [cosB~[sinB=0 ,
o 0
(7.3) 8(s) = 8(0) + 2kw (k = 0,1,2,...); 6(0) = §(8) ,
22 = 2
(ii) 8" =aAsin® +w., A>0, vy >0 .

[+]
Case 1. A = 0. In this case we may assume 00 = 0. Then 6(s) = uol and uo; = 2k¥, hence

wy = 2kn/s. For k = 1,2,...,6k(s) = 2kns/s satisfies all conditions. 8

circle of radius s/2km, traversed k times. The value of U for &

x Fepresents a

is  (2xw/3)2.

| 3
Case 2. A > 0O, wg >A. Ve may assume A =1 since if 8 is a solution of (7.3) for A > O,
of length 8 >0, then 8 defined by 5(3-1/2.) is a solution for A =], u: - A-lu: > 1, of

length & = A%, 1If § satisfies (7.3) then B(s) is uniquely defined by

8(s)
(7.4) s = f * ’
90 wy + sin v
=88e

et




k in (7.3i) must be positive, and w2

o is uniquely defined by

2kw
3= I ay
]

ug + sin ¢

For & defined in this way we have, after a change of variable,

s _ kn si
I sin 6(s)ds -f —Eme a4y

Y -kn v‘ug + siny

'k[fn sin.v f’ sin ¢

- dy -
0#@3+sin¢ ot‘u:-sin\o

/
which contradicts (7.3i). Thus no solution exists for u% > A,

dy] <0 ,

Case 3. A >0, u% <A. We may again assume A =1, thus we < 1. Conveniently replace %

by 6 + w, and write sin 6, for uz, with 0 < &, < % Thus (7.3ii) is replaced by

0

(7.314") 8 =sin6, - sind .

In this case -x - 0, < 6(s) < 8,, thus we must have k = 0 in (7.3i). Since 8(s) cannot
be monotone, we must have g(s) =0 and sin 8(s) = sin 6, for some s8; it is no restriction
to assume that this happens for s = 0, and 6(0) = - 3(0) = 0, A8 s increases from O
to some s,, 8(s) decreases from 6, to -v -0, when é(l') = 0. Since -7 -8, ¥ 6, the
curve cannot be closed yet, and as s increases further, 8(s) increases up to the value €,
which is attained for some s =3s,,, and é(:") = 0. If weset 6,(t) = 8(28,-t), we see

that @, satisfies (7.3ii') and 6 (s,) = 8(s,), hence 0, =8, i.e.

O(s, + t) = d(s, - t)

and, in particular, s, = 2s,. Thus the curve obtained is symmetric w.r.t. the point s = 0.
If we put 02(0) . =g - 3(..--) then we see that 02 satisfies (7.3ii') and

0,(0) = §(0) = o,, hence
s, -t) mn = B(v) ,

8-




the curve obtained is symmetric with respect to the line 6 = 0 and s(s./z) = -71/2.

L 5] (3]

The curve will be closed iff the conditions [ <cos 6 =0, [ 8in 8 = 0 are satisfied.
1] 0
The first equation follows directly from the symmetry of the curve. We are left with
S‘. et
@.3i" 0=/ sin 8(s)ds = 4f sin ¢
o]

—_—dy=0 .
-n/2 Vs8in 6, - sin ¢

Let the last integral be denoted as I(8,). Clearly I(0) = - % U<0 and
I(%) = 4o, Thus, there is a value 4 6, between O and #/2 for which (7.3i') holds, and it
is easily seen that there is only one such value (approximately 6, = 40°). With this value
of 8, we have obtained a closed extremal E* of length s, . It is an analytic curve, crossing

itself at s-ls

2 Bee? and consists of 2 congruent loops, each symmetric w.r.t. the same axis

(an illustration appears in [8, p. 404) as an example of an inflexional elastica) . By proper
scaling the curve will have the prescribed length 8. The differential equation for the
normal representation of the curve E‘ is

1

ok * * . g
a%8]% = sin 6, - sin 6, 0,(0) = 8, O

Thus, the inverse function 6 -+ s(6) is given by
e'

4 =x
s(6) = a #. <0 <0
J’e Bin6, -siny 2~ ¢

where the constant a is determined from
e'

-lf F_—g_%=
-x/2 vsin 6, - sin ¢

* in this sequence are obtained by traversing

*
The other extremals :2,33,...

times with scale factor %,-;-,... s thus their non'nl representations satisfy

[ ] * -
Ok(l) - olou), 0O<s<s .
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Case 4. Ay ” 0, u: = A. In this case the solution of (7.3i) is monotonically increasing in

s but does not attain eo + 2n for finite s.

*
Remark 7.1. The restriction of Bl(s) to [O,El represents a length-prescribed extremal

(length = 5/2) interpolating the "loop configuration” (po.pl} with Py = pl. This is not a

*
closed extremal, although it is a closed curve. Each el(ks) (k = 1,2,...; 0 <8< —:-) can also
be considered as then.r. of such an interpolating extremal. The curvature functional (potent-

ial energy) for this extremal is seen to have the value
al d 2
=1 ___f__¢__=] sin 8, .
§ -q/2 vsin @, - sin ¢
Clearly this function of 8 has no stationary value. It follows that there exists no extremal

interpolant (unconstrained) for the loop configuration.

Remark 7.2. The length-prescribed extremal interpolating the loop configuration can also be
obtained as the limiting case of the extremal of Sec. 6.E as @ + 0. There it was pointed out

that d(e,) =0 for 6, satisfying (see 6.18iii)

0 = I"/z sin 6 a8
-8, Vsin 8, + sin 6

Clearly, this is the above condition (7.31i').

B. We turn to the problem of closed extremals £ with two knots. We consider only
extremals that are symmetric with respect to the line joining the two given knots. We assume
Py = (0,00, p; = (0,-4) with d > 0 are the knots and that X = (',%) represents tne

extremal £, parametrized by arc length. If 8 is the length of £ and x(0) = Py’ then

23 « 2% (0) for k =0,1,2, and because of the symmetry, X(3/2) = P,. Thus, ve may
assume
2t = %l3-s), 22 = %3@-9), 0<ncd ,
[ ] [ ]
.9 (1.8 0 =S @ o BP0 =P a0, B --a,
. . . . [ . [ .
2o =2t =1, D -2y 20«32 = xd =0 .

ey
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I ¢ 1is the normal representation of £ then by (7.5) and Proposition 3.1,

(i) cos °e(s) = cos 5(;-5), sin 3(3) = -gin 3(;~s) .

°
0:813 ’

/2, /2, s .
(i) [ cos 6 =0, [ sin®=-4, [cos8=0 |,
0 0 0
s
[sin8 =0 ,
0
o G; o o
(7.6) (iii) 8(0) =0, 8(3) = jw, 8(s) =2jm j=0 or -1 .

% 58 b
(iv) 6(0) = 6(5) = 8(s) =0 ,

° 1 3 : 2 ° °
(v) 8%¢(s) = Alcos 8(s) + Alsin 6(s), 0<s<s/2 ,

1 ° 2 (-4 ° °
= Azcos 6(s) + lzsin (s), s/2<s<s .

s = ;/2 in (v) gives Ai = x: = 0; substitution of (i) in (v) gives xi = -Ai = -}, Thus

(7.6v) becomes

° ° °
(7.6v') 67(s) = -\ sin 6(s), 0 <s <s/2 ,

o o o
4\ sin 6(s), 8/2 <s<s .

When the conditions 8(0) = 0, 6(8/2) = 0 or -, 0(0) = 8(8/2) = 0 are taken together with

(7.6v'), it is seen that © is one of the functions ek of 86, with s replaced by

(0,8/2)
;/2. The symmetry condition gives for 5[; /2 ;]x
r

L3 e o o o
8(s) = -2jv - 6(s-8), 8/2 <8 <8 .
Thus we have found all solutions of system (7.6) and have proved

Proposition 7.2. There are countably many closed extremals il'iz"" with n.r. 51,32....

with two knots which are symmetric with respect to the line joining the knots. ik is obtained
from the open extremal Bk of Proposition 6.1 by reflection at the line joinino the knots. Each
E

X has the same length 2;, where ; is the length of the open ‘k' The value of the




£ 1
=z
]

° - -
curvature functional U for the extremal Ek is 2k201 where U1 is the valuc for the oior

El.

C. In this section we consider rectangular configurations as defined in Corollar;y 6.2.

Proposition 7.3. Let P = {po,...,pm.po) be a rectangular configuration as in Corollary €.2.

There exist countably many closed extremals with knots at po.....pm.

Proof. Since P is closed there must be an even number of right angles between consecutive

segments m, pipiu. To connect p1 to pM1 we use either the trivial extremal or one

of the 2-point open extremals of Proposition 6.1, with the proviso that we switch from one class
of extremals to the other if the angle at P; is a right angle, otherwise (if the angle is 0)
no switch is made. It is easy to see that infinitely many closed P-interpolants with con-

tinuous curvature everywhere can be obtained in this way.

D. Let Pyre-esPy be the vertices of a regular polygon ordered as they come when the
polygon is traversed counter-clockwise. Define Py for i > m by periodicity: Py P n

Let } for x=1,2,... . P

Pak ™ (PyePryyree e oPromy ™,k
Corollary 6.4 applies to, and if the construction used there is applied to Pn

is a configquration of the kind that
X one obtains

closed extremals. Thus we have

Proposition 7.4. For each regular configuration P‘ as described above there are infinitely

k
’
many closed extremal P-interpolants, each composed of congruent segments. For each k, there
is precisely one such extremal whose intersection with the polygonal path connscting the points
*
of P. X is precisely P-,k' For k=1, this extremal l- circumscribes the polygon counter-
’

clockvise and its representation x, satisfies
o® "
(Pi_'l - Pi) . ‘-(.1) - Ip1+1 - pi‘m ;, f®l,,0.,m .

If the polygon is inscribed in a unit circle, each of the = arcs of :: may be expressed

in terms of the inverse of its normal representation:

.‘o-

"

—
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" 1
. 2 sin a P(;Jg,w) . a1
(7.71) sn(e)- l,/" — l/‘ ,3-;:91-2-+; R
22(2 2.6_) - r(2 2'Bm)
where cos ¢ = ¥sin 6 and cos qﬂ = /cos w/m. 1In this case, the length s; and the energ;
U; of E: are given explicitly by,
n 1
« 2m sin Py !-'(-n/2 2,Bm)
(7.7i4i) s, - _14__ l/_ ’
.22(2 Z.Bm) - E‘(2 2.Bm)
and
* 4m 1 1 2
(7.74i4) U, = 1rm:(—v’z 2,8) - r(?/z',sm)l .
sin =
n
Finally,
s;(e)
(7.8) +1 as m+®

e ’

80 that the extremals have the unit circle as limit.

Proof. We sketch the verification of (7.7). Starting from the differential equation

Y:éz-sine ’
we obtain
s.(O)- [e de a < 8 < w-a a =+_-1
- Y.u sin-p' p 20 2 ' %m =2 " m °

Since the distance between adjacent points of Pm is 2 cos un, the cunstant Y is deter-

1
mined from

"2
Y, = cos am/f /sin ¢ dy

"
sin "

- 1 Y
/'2'!2!(-5/5.8-) - F(3/2,8)))

~6l-




3
7‘* This gives (7.7i). (7,7ii) is immediate and (7.7iii) follows from,
; . .o
1 " s /2m n/2 ;
U-2m]“l ezds-@f /ein v de . !
m Y :
5 0 m i
3 m :
The calculation (7.8) is routine. ’
* B
Remark 7.3. It is shown in [5] that the extremals Em are stable, i.e. they provide a local :
minimum for the curvature functional. . 4
i 3
{
i
i
|
i
|
i
i
2
|
i i
: }
E
-.’
-62~ . ¢
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Appendix

Let P = {po,...,pm}, be given and let Lo = X lpi+1-pi‘. We assume that P is not
i=)

collinear.

Theorem. For every L > L there exists a length-prescribed extremal P-interpolant of length

0

L satisfying Definition 2.2.
Proof. The existence of a function x, parametrized with respect to arc length, for which

U(x) = min{U(x) : x is an admissible P-interpolant

of length L}

is demonstrated in [6]. (The modification required for the ordering of the points in P is
trivial.) If X denotes the closed subspace of H2[0,L] consisting of those functions

vanishing at the knots,

<-<-<000<-<
0 < Sy < 5 L. L .,

of X, i.e., at those points §i for which ;(;i) 2 i=0,...,m, define f to be the
mapping of X into R obtained by f(y) = U(x +y) and let H be the function such that
H(y) = S(x + y) = L, where § is the usual length functional (cf. (2.13ii)). Clearly,

£(0) = min{£(y) : H(y) = 0} ,

and H'(0) is surjective, since P is assumed non-collinear. The result follows from the

Lagrange multiplier rule (see, e.g., [9, Theorem 1, p. 243]).

Y % B
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ABSTRACT (continued)

is carried out. Here {pi)g C.R2 is prescribed, x is a vector-valued function
with curvature «x(s) at arc length s and the interpolation nodes s, are free.
Problem (1) may be viewed as the mathematical formulation of the draftsman's techni-
que of curve fitting by mechanical splines.

Although most of the basic equations satisfied by these nonlinear splines curves
have been known for a very long time, calculation via elliptic integral functions has
been hampered by a lack of understanding concerning what precise information must be
specified for the stable determination of a smooth, unique interpolant modelling the
thin elastic beam. In this report, sharp characterizations are derived for the extre-
mal interpolants as well as structure theorems in terms of inflection point modes
which guarantee uniqueness and well-posedness.

A certain type of stability is introduced and studied and shown to be related to
(linearization) concepts associated with piecewise cubic spline functions, which
have been studied for decades as a simplication of the nonlinear spline curves. Many
examples are introduced and studied.




